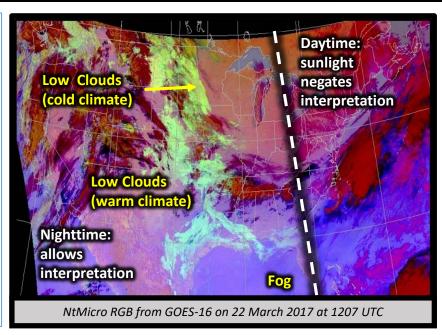


Nighttime Microphysics RGB

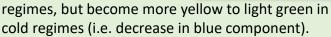

Quick Guide

Why is the Nighttime Microphysics RGB Imagery Important?

The distinction between low clouds and fog in satellite imagery is often a challenge. While the difference in the 10.4 and 3.9 µm channels has been a regularly applied product to meet aviation forecast needs, the Nighttime Microphysics (NtMicro) RGB adds another channel difference (12.4- 10.4 µm) as a proxy to cloud thickness and repeats the use of the 10.4 um thermal channel to enhance areas of warm (i.e. low) clouds where fog is more likely. The NtMicro RGB is also an efficient tool to quickly identify other cloud types in the mid and upper atmosphere.

NtMicro RGB Recipe (Note: this applies best to opaque clouds. Semi-transparent clouds are influenced by underlying surface)

Color	Band / Band Diff. (μm)	Physically Relates to	Small contribution to pixel indicates	<u>Large</u> Contribution to pixel indicates
Red	12.4 – 10.4	Optical Depth	Thin clouds	Thick clouds
Green	10.4 – 3.9	Particle Phase and Size	Ice particles; surface (cloud free)	Water clouds with small particles
Blue	10.4	Temperature of surface	Cold Surface	Warm surface


Impact on Operations

Primary Application

Low clouds & fog

analysis: Low clouds and

fog are aqua in warm

Differentiate fog from low clouds: Fog tends to appear "washed out" compared to low clouds. So, look for fog to have a less bright or near gray coloring.

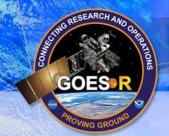
Efficient Cloud Analysis: The multi-channel approach of the RGB allows for easy and quick discrimination of cloud types across the imagery.

Secondary Applications: Cloud analysis: height and phase, fire hot spots, moisture boundaries

Limitations

Nighttime only

application: The shortwave IR band is impacted by solar reflectance during the day

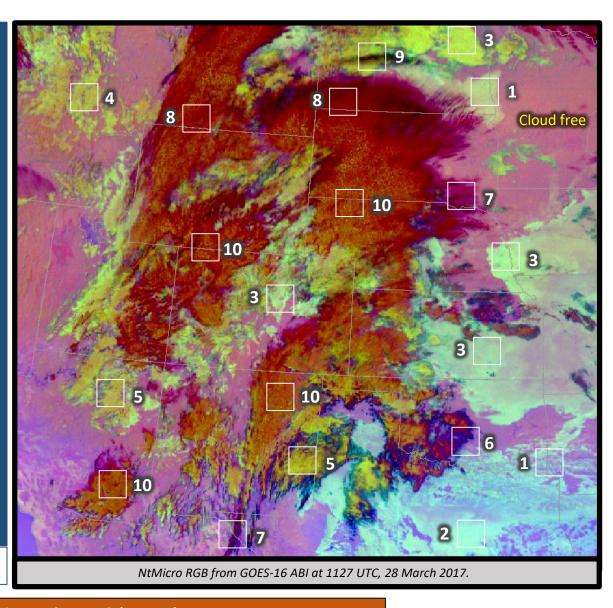

which impacts the 10.4 - 3.9 difference relationship.

Thin fog blends with surface: Thin radiation fog is semi-transparent allowing surface emissions to impact pixel color. Fog often has less blue than low clouds.

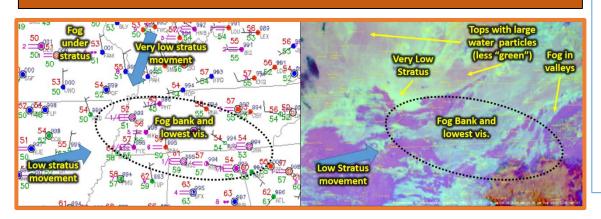
Variable land/surface coloring: The color of cloud free regions will vary depending on their temperature, surface type, and the column moisture.

Shortwave IR noise in extreme cold: Speckled yellow pixels appear in very cold clouds (~<-30°C)

Nighttime Microphysics RGB


Quick Guide

RGB Interpretation


- Fog (dull aqua to gray)
- Very low, warm cloud (aqua)
- Low, cool, cloud (bright green)
- Mid water cloud (light green)
- Mid, thick, water/ ice cloud (tan)
- High, thin, ice cloud (dark blue)
- High, very thin, ice cloud (purple)
- High, thick cloud 8 (dark red)
- High, opaque cirrus cloud (near black)
- High, thick, very 10 cold cloud (red/yellow, noisy)

Note:, colors may vary diurnally, seasonally, and latitudinally

Comparison to Other Products

Keep in mind that surface observations can provide visibility and ceiling information and the RGB will only provide cloud top information. Therefore, it is valuable to use the RGB with other observations.

Resources

UCAR/COMET

Multispectral Satellite Applications: RGB Products **Explained**

NASA/SPORT

Nighttime Microphysics RGB Module

EUMETrain

RGB Interpretation Guide